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ABSTRACT

Semantic interaction (SI) attempts to learn the user’s cognitive in-
tents as they directly manipulate data projections during sensemak-
ing activity. For text analysis, prior implementations of SI have
used common data features, such as bag-of-words representations,
for machine learning from user interactions. Instead, we hypoth-
esize that features derived from deep learning word embeddings
will enable SI to better capture the user’s subtle intents. However,
evaluating these effects is difficult. SI systems are usually evaluated
by a human-centred qualitative approach, by observing the utility
and effectiveness of the application for end-users. This approach has
drawbacks in terms of replicability, scalability, and objectiveness,
which makes it hard to perform convincing contrast experiments
between different SI models. To tackle this problem, we explore a
quantitative algorithm-centered analysis as a complementary evalua-
tion approach, by simulating users’ interactions and calculating the
accuracy of the learned model. We use these methods to compare
word-embeddings to bag-of-words features for SI.

Keywords: Semantic interaction, evaluation, word embedding,
sensemaking, visual text analytics, deep neural embedding

1 INTRODUCTION

Semantic interaction (SI) [10, 11] is an interaction technique for
non-experts to interact with the underlying algorithms of visual
analytics (VA) systems [7]. With SI, analysts can focus on reasoning
and manipulating data in the 2D spatialization instead of directly
interacting with the underlying machine learning (ML) models [1].
It is, therefore, the system’s responsibility to tune the ML models by
capturing users’ interactions and inferring the analyst’s intent [25].
These intents are then translated to updated model parameters via
semi-supervised machine learning techniques (ML) [10], such as
metric learning [5]. Hence, analysts can remain concentrated on
their sensemaking activities [23].

In this paper, we investigate two questions about SI: (1) Can word
embeddings help SI learn user’s interactive intents better than tradi-
tional features? (2) How can we comparatively evaluate alternative
SI models, such as in question (1)?

The human-centred approach [3] is the primary evaluation method
for SI systems. The SI system is measured by the utility and effec-
tiveness of the application for end-users through studies of human
subjects. For example, ForceSPIRE [12] is a visual text analysis sys-
tem powered by SI, and its effectiveness was measured by analysts’
performance on an intelligence analysis task. This approach is highly
dependent on human feedback, which leads to several challenges
when comparing the effectiveness of different SI models because:
user interactions are difficult to precisely replicate; SI interactions
are incremental and iteratively build; does not scale well to compare
many model alternatives as needed in ML; and usage differences
can mask subtle model performance differences.
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To cope with these problems, we design and perform an addi-
tional quantitative algorithm-centred analysis that simulates human
interactions as a complement to human-centered evaluation. In the
evaluation, we use the labelled text datasets as the ground truth, since
there is no ground truth for the users complex intents and concepts.
Then the ground truth is used to simulate user’s interactions, and we
calculate and compare the accuracy of trained models.

In this paper, we first describe two alternative SI models for visual
text analysis using different data features as inputs (embedding vec-
tors, and keywords vectors). We then implement a generalized visual
text analysis prototype with SI that can take both embedding vectors
and keywords vectors as features. We then demonstrate how the
two kinds of evaluation methods together provide a complementary
evaluation and comparison of these two SI models.

2 SEMANTIC INTERACTION WITH WORD EMBEDDINGS

We investigate the opportunity of using word embeddings to better
support SI. SI’s ability to infer the analyst’s reasoning process is fun-
damentally limited by the feature space of the underlying machine
learning. Text analytics systems with SI, such as ForceSPIRE [4,12]
and Cosmos [9], typically use keywords (such as text terms and
phrases) as data features (SIkeyword in Fig. 1a), known as bag-of-
words [31]. Recently, word embedding techniques [6,20,22,30], also
known as deep learning representations [2, 18, 26, 29], have shown
significant advantages in numerous tasks in natural language process-
ing and information retrieval [15, 17, 28] over bag-of-words features.
Therefore, the combination of SI with word embedding (SIembedding
in Fig. 1) might enable better learning ability than SIkeyword to up-
date the underlying machine learning models [19]. The intuition is
that word embeddings could represent more abstract concepts that
are closer to modeling human cognitive reasoning. To test the hy-
pothesis, we focus on the comparisons of SIembedding with SIkeyword
through the same SI pipeline but with different document features
as input:

• Keyword features used in SIkeyword: We use TF-IDF values
as the keyword features, and word hashing to compress the
large number of words from the document collection into 300
dimensions.

• Embedding features used in SIembedding: We use the pre-
trained GloVe model [21] with 300 dimensions to extract
embedding features, and use the “basic averaged word em-
beddings” method to compute average word embedding for all
words in a document [17].

2.1 Application Prototyping
As shown in Fig. 1, SIembedding has a similar structure with SIkeyword
as they both use numerical vectors to represent documents (embed-
ding vectors, and TF-IDF vectors). We are able to switch between
SIkeyword and SIembedding in the same SI prototype. We build the
prototype upon the foundation of Andromeda [24], a visual analytics
tool for exploring high-dimensional data projections. The proto-
type can use either bag-of-words or embedding vectors as features
and update the feature weights to capture analysts’ intents. For
bag-of-words, the system will up-weight the shared words in the
dragged documents in response to the analyst dragging two or more
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Figure 1: In the SI pipeline, distance metric learning interprets users’ interactions on the projection. (a) In SIkeyword , the extracted features of
text data are keywords; (b) In SIembedding, the features are embedding vectors.

documents closer together. For embedding vectors, the system will
up-weight the dimensions of the embedding vectors with similar
patterns in the dragged documents.

As shown in Figure 2-1, the visualization is a projection of doc-
uments. The distance between documents reflects their relative
similarity according to a weighted distance metric over their fea-
tures. At first, documents scatter in the workspace based on their
features and an equally-weighted dimension reduction of the high-
dimensional representation. If two documents are positioned close
to each other in this initial projection, it implies that these two docu-
ments are similar based on all vector features. Semantic interaction
enables analysts to directly manipulate the projection by moving the
documents to express their own domain knowledge about desired
similarities. With this interaction, analysts can express the semantic
relationships between documents, which thereby informs the under-
lying weighted distance model and updates the projection. Through
this, the projection can be customized according to the learned intent
of the analyst.

3 EVALUATING SI EMBEDDING

Traditionally, the human-centred approach is a good method to test
if the SI model is an effective application for analysts to perform
sensemaking tasks. However, comparing two SI models (SIkeyword
and SIembedding) through this approach is inadequate. Thus, we
also design a replicable quantitative study to validate SIembedding in
comparison to SIkeyword in 4 simulated text analysis tasks of different
difficulty levels.

3.1 User-Centered Qualitative Analysis

In this section, we present a practical use case about intelligence anal-
ysis as our qualitative study to compare SIkeyword against SIembedding.
For this analysis, we engaged an expert in intelligence analysis to re-
view the visual result generated from both SIembedding and SIkeyword
to provide qualitative feedback, and provide grounding for the quan-
titative analysis.

3.1.1 Crescent Dataset

The crescent dataset [13] has 42 fictional intelligence reports regard-
ing a coordinated terrorist plot in Boston, New York, and Atlanta.
Only 24 reports are relevant to these plots. The task for our qual-
itative analysis is to identify these three terrorist threats by using
SIembedding or SIkeyword .

By moving documents in the visualization according to their
perceived similarity, analysts express their reasoning process to the
system. The ground truth of this task is as follows, which we use to
measure the accuracy of the models: Boston: cia7, cia8, cia9, cia10,
cia11, fbi1, fbi2, fbi21, se3, se4; New York: cia11, fbi1, fbi10,
fbi13, fbi16, fbi22, fbi25, se2, se3, se4; Atlanta: cia4, cia11, fbi1,
fbi7, fbi11, fbi15, fbi17, fbi19, fbi20, fbi24, se4, se5; Irrelevant:
fbi3, fbi4, fbi5, fbi6, fbi8, fbi9, fbi14, fbi18, fbi23, cia1, cia2, cia3,
cia5, cia6, se1.

3.1.2 Case study with SIembedding

In this first case study, the analyst performs the task by using the pro-
totype system with embedding as the document features. As shown
in Figure 2-1, the analyst updates the layout to reflect the perceived
similarities between the documents, grouping three documents about
“New York” to the top left region of the projection, indicated by the
yellow arrows in Figure 2-2, three documents about “Atlanta” to the
bottom left region indicated by blue arrows, and three documents
about “Boston” to the bottom right part indicated by red arrows.

After the layout updates, some semantic relationships are revealed
(Figure 2-3.a). The left cluster in red circle contains documents about
“Boston,” the top right cluster in yellow circle contains documents
about “NYSE,” and the bottom right cluster in blue circles contains
documents about “Atlanta.” We found that there are semantic map-
pings between this updated layout and the ground truth; all relevant
reports that belong to single plot are well placed into each cluster.
Reports about the coordination between two or more plots are be-
tween clusters. For example, the report “se3” contains information
regarding both the “Boston” and “NYSE” plots, so the document is
located between these two clusters. Thus, SIembedding can capture
analysts intents and update the model features accordingly. The up-
dated layout then reflects the semantic meanings behind the intents.

3.1.3 Case Study Using SIkeyword

Mirroring our case study with SIembedding, the analyst performs
similar interactions with the prototype. As shown in Figure 2-3.b,
from the updated layout, there are no clear boundaries between
different plots. Even after continued interactions, the model is
unable to properly differentiate between the three terrorist plots.
For example, documents about “Atlanta” and “NYSE” are mixed
together. Furthermore, the documents that are pulled out of the big
central cluster in panel 4 are primarily the user interacted documents
from panel 2. This might indicate that the model is over-fitting based
on some specific unimportant keywords.

3.1.4 Expert Review
Besides comparing with the ground truth as we mentioned in Sec-
tion 3.1, we also asked an expert familiar with the dataset to evaluate
the updated layout generated in both SIembedding and SIkeyword (as
shown in Figure 2-3.a and Figure 2-3.b). The expert noted that
the SIembedding layout provides more meaningful information about
there plots than SIkeyword layout because the documents from dif-
ferent plots are grouped in different regions. In contrast, the layout
generated by SIkeyword makes it difficult to clearly distinguish be-
tween these plots. For example, documents in the the SIembedding
layout regarding coordination between the plots are placed between
the relevant groups. This is exemplified by how the report “se3” is
between the “NYSE” group and the “Boston” group since it dis-
cusses how terrorists involved in both plots communicated. In the
layout produced by SIkeyword , this document lies at the bottom right
of the projection, which does not have such an immediately apparent
and relevant semantic meaning.

Additionally, several irrelevant reports were distinguished from
the groups in the layout produced by SIembedding, such as “cia5”,
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Figure 2: Several screenshots during the two case studies, as discussed in Section 3.1: Frame 1 and 2 show the similar initial steps performed
by analysts in both case studies. Frame 3.a shows the resulting projection based on analysts’ interactions, in the case study using SIembedding.
Frame 3.b shows the resulting projection based on analysts’ interactions in the case study using SIkeyword .

“fbi23” and “fbi14,” even though they share many keywords with
other relevant reports. In contrast, the layout produced by SIkeyword
only causes one irrelevant report (“cia2”) to be pulled away from
other reports.

3.2 Algorithm-centered Quantitative Analysis
In this subsection, we describe our quantitative comparison between
Skeyword and SIembedding. We begin with the experimental design,
followed by a description of the datasets we choose for the exper-
iment. Finally, we show the evaluation results and discuss the SI
inference abilities of the two models.

3.2.1 Experiment Setup
We need ground truth to evaluate the underlying algorithms used
in SIkeyword and SIembedding quantitatively. There is no ground truth
about users’ complex intents and interactions, such as a labeled
intelligence hypothesis in a 2D projection. However, there are suffi-
cient text datasets labelled for classification, such as 20newsgroup
(section 3.2.2). The labels can be used to simulate different positions
in the projection: for example, documents with negative label can be

located at the top left part of the spatial layout, and documents with
positive label can be located at the bottom right part. Therefore, we
can use classification datasets mapped in the 2D projection as the
ground truth, and we only evaluate the inference ability to capture
the intents embedded in classification tasks. Then, subsets of the
documents from different positions in the 2D projection will be
picked and used as simulated semantic interactions from analysts.

Furthermore, since incremental formalism [27] is an important
aspect of semantic interaction, we must test the models’ ability to
learn incrementally over the course of many interactions. To simulate
and evaluate the incremental inference ability of these models, the
selected interactions will be iteratively passed into the SI model.
Through these iterative SIs, the underlying models incrementally
update to display better results to the analyst.

For example, in the task Tvis (sec. 3.2.2), we simulate that the
analyst wants to organize documents by separating the two con-
ferences (InfoVis and VAST) in the 2D projection as ground truth:
InfoVis documents placed at top left of the projection, and VAST
documents placed at bottom right. Then in each loop, five documents
from InfoVis collection, and five documents from VAST collection



Model Trec Treligion Tsys Tvis

SIembedding (0.921, 0.812) (0.829, 0.773) (0.895, 0.774) (0.958, 0.809)
SIkeyword (0.497, 0.570) (0.576, 0.581) (0.511, 0.584) (0.961, 0.793)

Table 1: Accuracies of SIembedding and SIkeyword on each of the four tasks (Trec, Treligion, Tsys, and Tvis). Two kinds of accuracies are measured:
the average accuracy of the trained model after the last interaction and the average accuracy of the models over all interactions.
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Figure 3: The accuracies of both SIembedding (blue) and SIkeyword (orange) over each interaction across the four tasks (Trec, Treligion, Tsys, and Tvis).

will be picked and simulated as semantic interactions: moving five
documents from InfoVis to (0,0) position and moving another five
documents from VAST to (1,1) position. In each iteration, the SI
model (SIembedding or SIkeyword) is executed to infer updated model
parameters from the simulated semantic interactions. Then the in-
ference ability of each model can be calculated by the quality of
the underlying model in classifying InfoVis documents from VAST
based on the ground truth.

3.2.2 Datasets and Tasks

To perform this quantitative analysis, we use two datasets: 20News
dataset [16] and Vispubdata dataset [14]. The 20 Newsgroup
dataset is a collection of newsgroups posts on 20 topics. Based
on this dataset, we create three tasks to simulate users’ in-
tents. Each of the 3 tasks are to separate the documents into
2 groups based on 2 pre-determined topics: Trec: 594 docu-
ments from “rec.autos” and 600 documents “rec.motorcycles”;
Tsys: 578 documents from “comp.sys.mac.hardware” and 592
documents from ”comp.sys.ibm.pc.hardware”; Treligion: 379
documents from “talk.religion.misc” and 599 documents from
“soc.religion.christian”.

The Vispubdata dataset contains information on IEEE Visual-
ization (IEEE VIS) publications. We select the abstracts of the
academic papers published in two conferences from the dataset: In-
foVis (IEEE Information Visualization), and VAST (IEEE Visual
Analytics Science and Technology). The documents from different
conferences are used to represent different concepts (users’ intents),
We create one task based on these abstracts to separate InfoVis pa-
pers from VAST papers, defined as Tvis, including 397 papers from
InfoVis and 531 papers from VAST.

3.2.3 Results

In this experiment, we have run the SIembedding and SIkeywrod model
multiple times on the four tasks with ground truth. After each
interaction (involving five document movements), we calculate the
model accuracy using the k-nearest-neighbour (kNN) classifier [8]
(as done in Dis-Function [5]): using the cross-validation over the
data and set k to 3. The average accuracy of the two models over all
iterations for fours tasks is shown in Figure 3.

Table 1 shows the average accuracy of the last interaction (per-
formed multiple times) and average accuracy of SIembedding and
SIkeyword across the four tasks. SIembedding achieved the highest
scores in the first three tasks, indicating that SIembedding provides

more accurate representations of the documents after the interac-
tions, indicating its higher inference ability over SIkeyword . In Tvis,
SIembedding and SIkeyword have similar accurracies, meaning their
inference abilities were roughly equal in this task.

As shown in the Figure 3, we further analyzed the incremental
updates from the two models by evaluating each model’s accuracy
after every iteration, thereby simulating the incremental analysis
process. In the first three tasks, it is shown that using SIembedding can
get better performance than SIkeyword over all the iteration loops. The
accuracy of SIembedding generally increases with each interaction,
showing incremental changes to the model’s representation of the
user’s intent over time. In contrast to the first three tasks, however,
in Tvis, both SIemebedding and SIkeyword have similar accuracy over
the interactions. Finally, the desired accuracy should be as close to 1
as possible. Tvis is a relatively “easy” task, as reflected by the final
accuracies of both models close to 1.0. These results indicate that
SIkeyword performs well in relatively easy tasks.

3.3 Discussion
Our experimental results substantiate our hypothesis that SIembedding
is more effective than SIkeyword for modeling user intent, and better
supports incremental formalism based on users iterative interac-
tions. The human-centered qualitatively evaluation method shows
SIembedding is more effective than SIkeyword in real world analysis
tasks. This provides a direct evaluation of SI models by the observed
utility and effectiveness for end-users. The quantitative analysis of-
fers a complementary approach, and provides replicable and scalable
evaluations for SI models. It provides more stable and detailed feed-
back about the SI model performance in tasks of different difficulty
levels. Thus, we confirmed that word embedding can better support
SI by better capturing the users’ high-level interactive intents.

4 CONCLUSION

In this work, we presented SIembedding as an alternative to the tra-
ditional bag-of-words model (SIkeyword) often used in visual text
analytics systems. To make a complete and convincing compari-
son between SIembedding and SIkeyword , we performed a quantitative
evaluation by simulating analysts’ interactions and calculating the
accuracy of the underlying trained ML models, as a complement
to the traditional user-centered qualitative evaluation. Results in-
dicate that deep learning distributed representations, such as word
embedding, can be exploited to improve interactive visual analytics
methods such as semantic interaction.
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