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ABSTRACT

Designing appropriate tasks in visualization evaluation remains chal-
lenging. Current evaluation tasks are often based on fact acquisition
- e.g., asking the participants to find the minimum values or the
correlation in a scatterplot. As a result, success in completing these
tasks may not be indicative of the effectiveness of visualizations,
especially those designed to support users in analyzing complex
data. In this paper, we propose the use of “inferential tasks” for the
evaluation of visualizations and visual analytics systems. Based on
the concept of inferential learning, inferential tasks refer to tasks
that require a user to draw conclusions not explicitly prompted by
relying on their problem-solving and reasoning abilities. We demon-
strate the effectiveness of inferential tasks in visualization evaluation
through a pair of experiments. The results suggest that, due to the
increased complexity of inferential tasks over fact-acquisition tasks,
participants tend to perform more interactions with the visualization
tool.

1 INTRODUCTION

Empirical evaluation is the underlying basis of the scientific method.
When evaluating visualization systems, numerous approaches have
been proposed over the years to ascertain the benefits of proposed
visualization system (see the surveys by Lam et al. [19] and Carpen-
dale [4]). Central to these approaches is the design of the “tasks”
that the users would perform using the visualization. Measuring and
observing the users’ performance on these tasks provides the basis
for evaluating the utility and effectiveness of the visualization.

Given that the design of tasks is critical to the success of an
evaluation [25], researchers in the visualization community have
conducted extensive surveys of the common tasks in visualization.
These surveys range from taxonomies of analytic activities [1, 8],
user interaction [36], management of insights [6, 26], multi-level
tasks and abstractions [3, 29], and tasks in domain-specific applica-
tions (e.g. exploration and analysis of graphs [16], time-series [24],
volume data [18], high-dimensional data [7] to name a few).

However, although there is a plethora of task taxonomies in the
visualization community, the most common tasks used in the evalua-
tion of visualization are still “fact acquisition” tasks. For example,
Amar et al. proposed ten low-level analytic activities in visualization
that have been frequently adopted as evaluation tasks [1], namely:
Retrieve Value, Filter, Compute Derived Value, Find Extremum,
Sort, Determine Range, Characterize Distribution, Find Anomalies,
Cluster, and Correlate. With the exception of Find Anomalies and
Cluster, the remaining eight tasks can be characterized as fact ac-
quisition in that the users are tasked in acquiring a specific piece of
information from reading the visualization. In each of these cases,
a participant’s success in performing the task does not signify the
effectiveness of a visualization in helping the user reason about the
data. Indeed, in these cases, the completion of the task can be carried
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out with a database query and does not require human expertise or
knowledge about the data.

In this paper, we present an alternative type of evaluation task that
is referred to as an “inferential task”. Based on the concept of infer-
ential learning from psychology and education literature, where stu-
dents construct knowledge by inferencing relations between learned
concepts and new observations, inferential tasks similarly evaluate
whether a participant can observe relations in a visualization and
apply the observation to other parts of the data. For example, a
typical inferential task used in evaluating visualization has the form:
“In the visualization, observe that there is a relationship between data
items A and B. Where else in the data does the same relationship
occur?” In this example, the participant is not provided with what
the relationship between A and B is. If such a relationship is pro-
vided in the task prompt, the task becomes fact acquisition. Instead,
the participant needs to infer the possible relationships between A
and B by posing a hypothesis and testing it by probing the data via
the visualization. In the case that such a relationship does not exist
elsewhere in the data, the participant could conclude that their initial
hypothesis is incorrect. They would then need to produce another
hypothesis in order to complete the task.

Inferential tasks are sometimes used currently in visualization
evaluations, and we do not presume to invent either the term or the
task type. However, we offer both a formalization and an opera-
tionalization that have not existed previously in the literature. We
define inferential tasks for visualization as a set of tasks whose so-
lution has at least one free variable, thus requiring the participant
to produce hypotheses in the space of free variables. Using this
definition, we describe a method for designing inferential tasks that
trades off task difficulty, richness of interaction data, and participant
conversion rate. We demonstrate the effectiveness of the inferential
task in two experiments using two types of visualizations (tabular
data analysis using cross-filtering and a visualization of hierarchi-
cal data). In both experiments, participants were asked to perform
both fact-acquisition tasks and inferential tasks. We show that when
performing inferential tasks across three different visualizations,
the participants consistently performed between 25%-250% more
interactions and spent 35%-87% more time on their task. Together,
the quantitative and qualitative data collected from the inferential
tasks provide the researchers a richer sense of the performance and
effectiveness of their visualization.

2 RELATED WORK AND BACKGROUND

How to evaluate hypotheses related to the usage of visualizations
is a vibrant debate in the literature. In a 2004 call-to-arms, Plaisant
suggested four categories of visualizations: controlled experiments
comparing design elements, usability evaluations, controlled experi-
ments between two tools, and case studies [28]. In 2008, Carpendale
published a similar article that outlined the challenges in evaluating
visualizations and proposed a number of evaluation methodologies
from other domains that could be suitable for the visualization com-
munity [4]. In between the publication of these two seminal papers,
researchers in the visualization community established the BELIV
workshop [21] that focuses on the research of evaluation techniques,
which remains an active and vibrant event today.

The call-to-arms by Plaisant and Carpendale and the establish-
ment of BELIV have had a strong influence in the way that visualiza-
tion papers are published today. In a survey by Isenberg et al. [15],
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the authors found that in 2013, nearly all (97%) of the published
papers in the IEEE VIS conference included an evaluation. This is
a significant increase over the prior review by Perer and Shneider-
man who found that as recently as 2007, only 42% of the papers
published in IEEE InfoVis and VAST included an evaluation.

Beyond raising awareness, part of the reason for the increased fo-
cus on evaluation is the development of new evaluation methods and
their acceptance and adoption. Methods such as insight-based eval-
uation [26], realization of expert-based feedback as viable metrics
for evaluation [34], and the validation of crowdsourcing platforms
(such as Amazon’s Mechanical Turk) as a viable evaluation method-
ology [13] all contributed to the rise in evaluation in the visualization
community.

However, while there has been tremendous growth in the devel-
opment of new evaluation methods, there has been limited improve-
ment of the tasks used in these evaluations. Notable exceptions are
domain-specific tasks, either for specific data types or visualization
designs [7, 16, 18, 24, 30], and tasks specific to particular application
domains or usage contexts [5, 14, 23, 31]. To the best of our knowl-
edge, our proposed use of inferential task in evaluating visualization
is one of the few “complex” tasks that can be adopted generally
for a wide range of data types, domains, users, and visualization
designs. The closest previous work to our is the work by Lam et.
al. which describes the set of tasks a participant must do to accom-
plish a goal [20] in a design study. The authors categorize tasks
found in 20 design studies in the visualization community into single
population analyses and multiple population analyses. Our work
offers identifies these tasks with the concept of inferential learning,
offers a formalization of the construction of these tasks, and presents
experiments studying the richness of interaction data gathered from
these tasks.

3 INFERENTIAL LEARNING

The principle behind the use of inferential task is rooted in inferential
learning, a concept from psychology and education research. Seel
suggests three broad categories of learning: procedural/acquisitive
learning, experiential learning, and inferential learning [32]. Proce-
dural learning (or acquisitive learning) refers to learning that occurs
through repeating actions, turning the task into a procedure [33].
As the name suggests, experiential learning is the learning through
experience and the reflection on that experience [17]. In contrast
to procedural and experiential learning that involve doing, inferen-
tial learning is learning that occurs through thinking, in particular
inductive, deductive, and abductive reasoning [32]. The key point is
that a learner must reason on the task at hand, forcing them to build
relationships between known and unknown information.

While they have not been a primary subject of study, inferential
tasks have previously been used to evaluate visualizations. Green
et. al. used inferential tasks in a between-subjects experiment to
evaluate a visual analytics system and a web-based list (tabular) view
of the same data [9, 10]. The authors found improved performance
in participants using the visualization for inferential tasks, but no
significant difference for simple tasks, suggesting that the value of
a visualization may be more noticeable for inferential tasks. Fur-
ther, the authors found that the participants’ interactions with the
visualization when performing the inferential task can be analyzed
to predict the participants’ personality traits. This finding gives
credence to the belief in the richness of the interaction data when
using inferential tasks in an evaluation.

However, while there is evidence that inferential tasks can be
useful, there does not exist a clear definition of inferential tasks
for evaluating visualizations. It is also unclear how these tasks can
be created to adjust for task difficulty. In this section, we provide
the formalism for inferential tasks and give examples of how these
tasks can be constructed. In the following sections, we present two
controlled experiments to evaluate the value of inferential tasks in

Origin Date Airline Weather Operation Deg. of
Freedom
Calif. 31st UA Rainy Read Value 0
Calif. 31st - Rainy Find Max 0
Calif. 31st - - Find Max 0
Calif. 31st - Rainy - 1
Calif. - UA Rainy - 1
Calif. 31st - - - 2
Calif. 30-31 - - - 2�3⇤

Table 1: Examples of tasks on the visualization in Figure 1 with

different degrees of freedom. Empty cells denote unspecified parts

of a query. When the Operation is unspecified, it can be considered

the same as “find something interesting”. In the final row, brackets

correspond to asking the user to compare between two values across

the other two dimensions, which has between 2 and 3 degrees of

freedom (see text).

visualization evaluation.

3.1 Defining Inferential Tasks
Using the concept of degrees of freedom of a task, we present a uni-
fying framework for considering both fact acquisition and inferential
tasks and suggest ways in which these tasks can be constructed that
reflect their level of difficulty.

First, we observe that the each user interaction with a visualiza-
tion can be considered as the generation and the evaluation of a
question/hypothesis. For the purpose of our definition, we presup-
pose that the outcome of testing the question or hypothesis does not
need to be a “true” or “false”, but can instead be a number, a string,
or some fact about the data. With this assumption, a user’s interac-
tion with a visualization (such as clicking on a button or filtering by
some values) can equate to generating a question or hypothesis (e.g.
“is there an abnormally high number of delayed flights originating
from California?”). In return, when the user views the resulting
visualization, the user is evaluating the question or hypothesis by
looking to see if the bar in the barchart that corresponds to delayed
flights from California is higher than others.

Using this definition, a fact-acquisition task is one in which a
hypothesis is given to the participant (in plain words as part of the
instruction of an evaluation task). The participant’s role is therefore
to determine the sequence of interactions to generate that hypothesis
within the visualization, and to evaluate the hypothesis by reading
from the visualization. In this regard, we say that the “degree of
freedom” of this task is zero because the participant does not need to
perform any inferential reasoning. In contrast, inferential tasks are
tasks whose degrees of freedom is one or above. When performing
inferential tasks, the participant would need to consider multiple
data items or data dimensions to formulate hypotheses or questions
and to evaluate them. An example is illustrated in Figure 1

In the examples given above, any dimension not specified in the
task prompt but present in the visualization is an additional degree
of freedom. If the visualization featured many different features of
the data, each feature could be part of the solution. The participant
is required to test out a combinatorially large number of hypotheses,
and may become bored or disengaged with the task. It is also
likely that there are many valid solutions, which can frustrate the
participant and also make it difficult to validate the participant’s
responses. Care must be taken to limit the number of degrees of
freedom of each task implied by the visualization being used.

3.2 Task Operations
Every task on a visualization requires the user to execute an oper-
ation. The operation could be as simple as read value, or it could
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Figure 1: An illustration of the degrees of freedom in a task on a cross-linked set of four bar charts. The data represents the number of flights in

four dimensions: State of departure, Day of month, Carrier, Weather. The initial task prompt, Tell me something interesting about flights, has

four degrees of freedom, requiring the user to make complex hypotheses across all four visualized dimensions. By adding qualifiers onto the

statement, the number of degrees of freedom is decreased. By the end of the statement, the only degree of freedom is in the Weather dimension.

An inferential task has at least one degree of freedom in its solution. A task with no degrees solution is called a fact acquisition task. In this case,

such a task would specify all four dimensions and ask the user to read the value corresponding to a single bar.

require the user to find max. The choice of operation may have an ef-
fect on the degrees of freedom of the task. Consider the cross-filtered
visualization depicted in Figure 1. A task, ”Tell me something in-
teresting about flights leaving from California on March 31st on
a Rainy day”, leaves one degrees of freedom open (see Row 4 in
Table 1). The operation of the task, “tell me something interesting”,
is open-ended.

If, instead, the operation in the previous task is changed to “find
the carrier with the greatest number of flights on a Rainy day leaving
California on March 31st” (a Find Extremum task [1]), the degrees of
freedom of the task would be reduced to zero, since the hypothesis is
completely described by the task’s operation. The user can filter to
the correct state, date, and weather condition, and visually ascertain
the max in a single atomic interaction (see row 2 in Table 1).

4 EXPERIMENTS

While the use of inferential tasks in visualization evaluation holds
promise and has been shown to be effective [10, 11], previous ex-
periments used a different definition of inferential tasks. In this
section, we describe the two experiments we conducted using tasks
constructed from our method to better understand the effect of an
inferential task on user interaction data.

Our two experiments test two types of visualizations: (1) a tradi-
tional cross-coordinated visualization for tabular data and (2) visu-
alizations for exploring hierarchical data. We measure interactions
with the visualization, such as mouse clicks or mouse movements,
throughout the user’s completion of the task. We hypothesize that
inferential tasks provide richer interaction data; specifically, we hy-
pothesize that across each visualization, and each dataset, inferential
tasks will: (H1) have more interactions, and (H2) participants will
spend more time on inferential tasks.

4.1 Cross-Linked Histograms
In our first experiment, we asked participants a sequence of questions
about flights to Hawaii in the month of December. The data was a
modified version of a dataset collected by the Bureau of Transporta-
tion Statistics consisting of flight delay information in the united
states [27], modified so that the questions asked had easy answers
(e.g. by injecting additional flights on a certain day). The participant
is provided a set of histograms corresponding to four attributes of
the flights: State of origin, Day of month, Carrier, and whether the
flight was delayed or not. By clicking on a bar or brushing over
several bars, the participant is able to filter the data. The data that
doesn’t match the filter is grayed out after a filter is applied. The
interface is based on the visualization used by Liu and Heer [22]
used to study latency effects, and can be seen in Figure 2.

Figure 2: A cross-linked set of histograms used in an experiment com-

paring user interactions between fact acquisition tasks and inferential

tasks. We found that participants spent more time and had more

interaction with the visualization on the inferential tasks.

Tasks Participants completed a set of three fact acquisition
tasks and three inferential tasks. The fact acquisition tasks asked
participants to apply various filters and make judgements about the
resulting histograms. Inferential tasks had at least one degree of
freedom, as described in Section 3.1. An example of an inferential
task given that had three degrees of freedom (State, Delayed, and
Carrier) is given:

On the 25th, there is something unusual about the flights from the
carrier Alaska. Which carrier had a similar pattern in their flights on
the 31st?

Participants 16 participants were gathered via HITs on Ama-
zon’s Mechanical Turk. 3 participants exited the survey before they
were able to complete the demographics survey. Of the remaining 13
participants, there were 3 women, 9 men, and one declined to answer.
The ages ranged from 22 to 42 (µ = 29.17 and s = 5.89). Partici-
pants were compensated per task completed, a bonus for completing
all tasks, and a bonus related to their accuracy on the tasks.

Procedure Participants were first presented with a consent
form outlining their compensation, and then were given a tutorial
with a training task of each type before being tested on 3 inferential
and fact acquisition tasks.
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p µacq µin f
Interactions < 0.01 15.93 40.13
Time (s) < 0.001 93.46 174.56

Table 2: The effect of inferential tasks vs. data acquisition tasks on

task time and number of interactions with a cross-filtered histogram

visual tool across 10 participants.

4.1.1 Results
10 participants successfully completed all 6 experimental tasks; the
remainder were excluded from analysis. For each participant, an
average number of interactions (i.e. mouse clicks or brushes on the
histogram) was calculated across their three fact acquisition tasks,
and a separate average was calculated across their three inferential
tasks. The effect was significant for both number of interactions and
length of interactions using a two-tailed within-subjects t test. The
results are summarized in Table 2.

4.2 Hierarchical Data Exploration
We also investigated the behavioral impact of task type for hierarchi-
cal data exploration. We analyzed interaction data from a controlled
user study in which participants completed search and inferential
tasks on two hierarchical visualizations: an indented tree (V1) and a
nested boxes representation (V2). Figure 3 shows the stimuli used
in the study. The datasets were taken from the National Center of
Biotechnology Information’s Genome database and showed the evo-
lutionary relationships between species. The icons, text sizes, and
interaction styles were constant for the two views, and participants
explored the tree by clicking on nodes to expand the various subtree.
Clicking on an already expanded node collapses the subtree.

Tasks Participants completed a control search task and an infer-
ential task for each visualization. The search task was a single fact
acquisition task that instructed participants to find a specific species,
and read a single value, therefore having no degrees of freedom in
the task.

Comparison tasks were used as inferential tasks:

Under “Anura,” find the classification “Bufo” and note
the subclasses it contains. There is another classification
under “Mesobatrachia” that has something notable in
common with “Bufo.” Find that classification.

Participants 299 participants completed the task via an exter-
nal link on Amazon’s Mechanical Turk. There were 143 women
and 155 men (with 1 not answering) in the subject pool with ages
ranging from 18 to 65 (µ = 31.8 and s = 9.60).

Figure 3: Two hierarchical visualizations used for measuring inter-

actions on fact acquisition tasks and inferential tasks. On the left, a

textual visualization where indenting indicates nesting. On the right,

a window-style hierarchical visualization. Each participant was given

both types of tasks on each visualization, using the same dataset.

Viz p µacq µin f
Clicks V1 < 0.001 35.85 58.93
Clicks V2 < 0.005 32.76 40.52
Moves V1 < 0.001 1852 3051
Moves V2 < 0.005 2320 2927
Time(s) V1 < 0.001 116.5 193.0
Time(s) V2 < 0.001 146.0 202.1

Table 3: Results of an experiment measuring the effect of inferential

tasks vs. data acquisition tasks on task time and number of interac-

tions with two hierarchical visualizations seen in Figure 3 over 299

participants.

Procedure The study consisted of two sessions, one for each
visualization. For each session, participants completed a search task
and an inferential task. The order of the tasks were counterbalanced
to prevent ordering effects. Once the four tasks were done, they then
completed a brief demographic survey.

Data Collection and Cleaning During the study, we cap-
tured every mouse click and mouse move event. We recorded the
time of the event, the data element, and coordinates of the cursor.
All participants who answered each question were included in the
analysis; no effort was made to remove participants that clicked
fewer than 5 items, for example. This was intentional, as we don’t
want to remove the effect of a participant being frustrated with one
type of task (for example, inferential) over another (fact acquisition).

4.2.1 Results
For each visualization, we tested a difference of means with a within-
subjects two-tailed t-test for the amount of time spent on the task,
the number of clicks, and the number of mouse moves. All six cases
were significant differences, with exact values given in Table 3.

4.3 Analysis
The effect of inferential tasks vs. fact acquisition tasks was tested
across three different visualizations (cross-linked histograms, tex-
tual indented tree, nested boxes) and two different scenarios (cross-
filtering aggregations, hierarchical data exploration). In all cases,
the difference in number of interactions and amount of time spent
on the task was large and significant. In the context of our two
hypotheses, we confirm the hypothesis (H1) that participants per-
form more actions in inferential tasks than in data acquisition tasks.
This is evident from the fact that participants performed between
25% and 250% more interactions in both experiments across all
three visualizations. Likewise, we also confirm the hypothesis (H2)

that participants spend more time on inferential tasks. In the two
experiments, this difference ranged from 35% to 87% more time.

5 DISCUSSION AND CONCLUSION

In this work, we offer a definition for inferential tasks that can
be used to construct such tasks for visualization evaluation. But
there are many other considerations for implementing such tasks.
The difficulty of tasks must be considered; leaving open degrees of
freedom in the task means that the task is more open-ended, more
difficult, and can result in frustration for the experimental participant.
Computational models of task difficulty could be built based on data
size and schema, and they could even be used to automatically
generate training tasks for a new dataset. The relationship between
cardinality, dimensionality, and degrees of freedom closely mirrors
other combinatorial notions of data that have been very impactful in
both information visualization and machine learning [2, 12].

In a recent work in the Journal of Experimental Psychology, West-
fall et. al. identified that when a mismatch between the specificity
of experimental stimuli and the lack of specificity in the conclusion
of an experiment, our statistical tests no longer have validity [35].
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In a visualization experiment, this would correspond to testing the
participant on an easy task like fact acquisition, and then gener-
alizing the efficacy of the visualization onto more difficult tasks.
In our work, we propose using inferential tasks in experiments us-
ing visualizations, as the interactions that a participant makes with
the visualization better match those of the complex tasks which
visualizations are used for in the real world. We performed two
experiments to validate the effectiveness of the use of inferential
task. The results confirm our claim that the increased complexity
of the inferential tasks (when compared to fact acquisition tasks)
perform more interactions over longer task completion times. When
used within the appropriate context of an experimental design, in-
ferential tasks can be improve the community’s ability to evaluate
visualizations and visual analytics systems.
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